Logical connectives
Conjuction methods
DrasticAnd
FuzzyLogic.DrasticAnd
— Typestruct DrasticAnd <: FuzzyLogic.AbstractAnd
Drastic T-norm defining conjuction as $A ∧ B = \min(A, B)$ is $A = 1$ or $B = 1$ and $A ∧ B = 0$ otherwise.
EinsteinAnd
FuzzyLogic.EinsteinAnd
— Typestruct EinsteinAnd <: FuzzyLogic.AbstractAnd
Einstein T-norm defining conjuction as $A ∧ B = \frac{AB}{2 - A - B + AB}$.
HamacherAnd
FuzzyLogic.HamacherAnd
— Typestruct HamacherAnd <: FuzzyLogic.AbstractAnd
Hamacher T-norm defining conjuction as $A ∧ B = \frac{AB}{A + B - AB}$ if $A \neq 0 \neq B$ and $A ∧ B = 0$ otherwise.
LukasiewiczAnd
FuzzyLogic.LukasiewiczAnd
— Typestruct LukasiewiczAnd <: FuzzyLogic.AbstractAnd
Lukasiewicz T-norm defining conjuction as $A ∧ B = \max(0, A + B - 1)$.
MinAnd
FuzzyLogic.MinAnd
— Typestruct MinAnd <: FuzzyLogic.AbstractAnd
Minimum T-norm defining conjuction as $A ∧ B = \min(A, B)$.
NilpotentAnd
FuzzyLogic.NilpotentAnd
— Typestruct NilpotentAnd <: FuzzyLogic.AbstractAnd
Nilpotent T-norm defining conjuction as $A ∧ B = \min(A, B)$ when $A + B > 1$ and $A ∧ B = 0$ otherwise.
ProdAnd
FuzzyLogic.ProdAnd
— Typestruct ProdAnd <: FuzzyLogic.AbstractAnd
Product T-norm defining conjuction as $A ∧ B = AB$.
Disjunction methods
BoundedSumOr
FuzzyLogic.BoundedSumOr
— Typestruct BoundedSumOr <: FuzzyLogic.AbstractOr
Bounded sum S-norm defining disjunction as $A ∨ B = \min(1, A + B)$.
DrasticOr
FuzzyLogic.DrasticOr
— Typestruct DrasticOr <: FuzzyLogic.AbstractOr
Drastic S-norm defining disjunction as $A ∨ B = \min(1, A + B)$.
EinsteinOr
FuzzyLogic.EinsteinOr
— Typestruct EinsteinOr <: FuzzyLogic.AbstractOr
Einstein S-norm defining disjunction as $A ∨ B = \frac{A + B}{1 + AB}$.
HamacherOr
FuzzyLogic.HamacherOr
— Typestruct HamacherOr <: FuzzyLogic.AbstractOr
Hamacher S-norm defining conjuction as $A ∨ B = \frac{A + B - AB}{1 - AB}$ if $A \neq 1 \neq B$ and $A ∨ B = 1$ otherwise.
MaxOr
FuzzyLogic.MaxOr
— Typestruct MaxOr <: FuzzyLogic.AbstractOr
Maximum S-norm defining disjunction as $A ∨ B = \max(A, B)$.
NilpotentOr
FuzzyLogic.NilpotentOr
— Typestruct NilpotentOr <: FuzzyLogic.AbstractOr
Nilpotent S-norm defining disjunction as $A ∨ B = \max(A, B)$ when $A + B < 1$ and $A ∧ B = 1$ otherwise.
ProbSumOr
FuzzyLogic.ProbSumOr
— Typestruct ProbSumOr <: FuzzyLogic.AbstractOr
Probabilistic sum S-norm defining disjunction as $A ∨ B = A + B - AB$.
Implication methods
MinImplication
FuzzyLogic.MinImplication
— Typestruct MinImplication <: FuzzyLogic.AbstractImplication
Minimum implication defined as $A → B = \min(A, B)$.
ProdImplication
FuzzyLogic.ProdImplication
— Typestruct ProdImplication <: FuzzyLogic.AbstractImplication
Product implication defined as $A → B = AB$.