Learning fuzzy models
FuzzyLogic.fuzzy_cmeans
— Functionfuzzy_cmeans(
X::Array{T<:Real, 2},
N::Int64;
m,
maxiter,
tol
) -> Tuple{Any, Any}
Performs fuzzy clustering on th data X
using N
clusters.
Input
X
– $d × M$ matrix of data, each column is a data pointN
– number of clusters used.
Keyword argumes
m
– exponent of the fuzzy membership function, default2.0
maxiter
– maximum number of iterations, default100
tol
– absolute error for stopping condition. Stop if $|Eₖ - Eₖ₊₁|≤tol$, where $Eₖ$ is the cost function value at the $k$:th iteration.
Output
C
– $d × N$matrix of centers, each column is the center of a cluster.U
– $M × N$ matrix of membership degrees,Uᵢⱼ
tells has the membership degree of the
j
th point to the
i
`th cluster.